Skip to main content

Trinity College Dublin, The University of Dublin

Menu Search


Trinity College Dublin By using this website you consent to the use of cookies in accordance with the Trinity cookie policy. For more information on cookies see our cookie policy.

      
Profile Photo

Dr. Bruce Murphy

Assoc Prof. in Biomechanical Engineering (Mechanical, Manuf & Biomedical Eng)
PARSONS BUILDING


Degrees and Professional Qualifications BAI (Mechanical engineering) 1997 Trinity college Dublin Dip. Stat (statistics) 1998 Trinity College Dublin PhD (Orthopaedic Bioengineering) 2002 Trinity College Dublin Employment Lecturer May 2009 - present Department of Mechanical and Manufacturing Engineering, TCD Principal Investigator July 2005 - April 2009 NCBES, NUI Galway Project manager October 2002 - June 2005 NCBES, NUI Galway Postdoctoral Researcher Sep 2001 -Oct 2002 NCBES, NUI Galway Additional roles: Part-time lecturer Jan 2004 - May 2004 Dept. of Mechanical and Bioengineering NUI, Galway
  Bioengineering   Medical Devices
 The Development of a Transcatheter Tricuspid Valve Repair System (CroiValve)
 CTO Re-entry Device Design & Development
 AMCARE - ADVANCED MATERIALS FOR CARDIAC REGENERATION
 Westland mitral valve
 The in vivo evaluation of an easy to position transcatheter mitral valve repair/replacement device

Page 1 of 2
Alix Whelan, Collagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardium, Journal of the Mechanical Behavior of Biomedical Materials, 90, 2019, p54 - 60, Journal Article, PUBLISHED  TARA - Full Text  DOI
Dolan, E.B. and Hofmann, B. and de Vaal, M.H. and Bellavia, G. and Straino, S. and Kovarova, L. and Pravda, M. and Velebny, V. and Daro, D. and Braun, N. and Monahan, D.S. and Levey, R.E. and O'Neill, H. and Hinderer, S. and Greensmith, R. and Monaghan, M.G. and Schenke-Layland, K. and Dockery, P. and Murphy, B.P. and Kelly, H.M. and Wildhirt, S. and Duffy, G.P., A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction, Materials Science and Engineering C, 103, (109751), 2019, Journal Article, PUBLISHED  DOI
Curley, C.J. and Dolan, E.B. and Otten, M. and Hinderer, S. and Duffy, G.P. and Murphy, B.P., An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure, Drug Delivery and Translational Research, 9, (1), 2019, Notes: [cited By 1], Journal Article, PUBLISHED  DOI
Whyte, W. and Roche, E.T. and Varela, C.E. and Mendez, K. and Islam, S. and O'Neill, H. and Weafer, F. and Shirazi, R.N. and Weaver, J.C. and Vasilyev, N.V. and McHugh, P.E. and Murphy, B. and Duffy, G.P. and Walsh, C.J. and Mooney, D.J., Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir /692/4019/2773 /639/301/54/152 /14/5 /14/35 /14/63 /59/5 /96/106 /96/100 /96/34 article, Nature Biomedical Engineering, 2, (6), 2018, p416-428 , Notes: [cited By 0], Journal Article, PUBLISHED  DOI
Dolan, E.B. and Kovarova, L. and O'Neill, H. and Pravda, M. and Sulakova, R. and Scigalkova, I. and Velebny, V. and Daro, D. and Braun, N. and Cooney, G.M. and Bellavia, G. and Straino, S. and Cavanagh, B.L. and Flanagan, A. and Kelly, H.M. and Duffy, G.P. and Murphy, B.P., Advanced Material Catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels, Journal of Biomaterials Applications, 33, (5), 2018, p681-692 , Notes: [cited By 3], Journal Article, PUBLISHED  DOI
Curley, C.J. and Dolan, E.B. and Cavanagh, B. and O'Sullivan, J. and Duffy, G.P. and Murphy, B.P., An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 105, (8), 2017, p2618-2629 , Notes: [cited By 0], Journal Article, PUBLISHED  DOI
Dolan, E.B. and Gunning, G.M. and Davis, T.A. and Cooney, G. and Eufrasio, T. and Murphy, B.P., The development and mechanical characterisation of a novel reinforced venous conduit that mimics the mechanical properties of an arterial wall, Journal of the Mechanical Behavior of Biomedical Materials, 71, 2017, p23-31 , Notes: [cited By 0], Journal Article, PUBLISHED  DOI
O'Neill, H.S., Gallagher, L.B., O'Sullivan, J., Whyte, W., Curley, C., Dolan, E., Hameed, A., O'Dwyer, J., Payne, C., O'Reilly, D., Ruiz-Hernandez, E., Roche, E.T., O'Brien, F.J., Cryan, S.A., Kelly, H., Murphy, B., Duffy, G.P., Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives, Advanced Materials, 2016, p5648-5661-, Journal Article, PUBLISHED  DOI
Gunning, G.M., Murphy, B.P., The effects of decellularization and cross-linking techniques on the fatigue life and calcification of mitral valve chordae tendineae, Journal of the Mechanical Behavior of Biomedical Materials, 57, 2016, p321-333 , Journal Article, PUBLISHED
van Elk, M., Murphy, B.P., Eufrásio-da-Silva, T., (...), Duffy, G.P., Ruiz-Hernández, E., Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems, International Journal of Pharmaceutics, 515, (1-2), 2016, p132-164 , Journal Article, PUBLISHED  DOI
  

Page 1 of 5

  

Repair and regeneration of the cardiovascular system. Namely: Mitral valve disease, adventitial delivery of therapeutics, Cardiac regeneration, customising decellularized tissue for replacing diseased vascular tissue